Foliar Nematodes on Ornamental Plants

Introduction
Nematodes are non-segmented roundworms. They range in size from less than a half a millimeter (microscopic) to nearly eight meters long and live in moist or aquatic environments. While most of the approximately 20,000 named species feed on microbes, fungi or other tiny organisms (even other nematodes), some are parasitic on plants. Most plant parasitic nematodes are soil inhabitants that damage plants by feeding in or on the roots. Foliar nematodes, in contrast, feed on above ground plant parts, causing injury leaves, buds and young stems.

Types of Foliar Nematodes and their Host Range

The strawberry leaf nematode (*Aphelenchoides fragariae*) is common on many different perennials and plants collected from the wild. Anemone, aquilegia, baptista, chrysanthemum, many different types of ferns, fragaria, hepatica, heuchera, hosta, hypericum, iris, ligularia, lilium, malva, orchid, peony, oriental poppy, phlox, polygonatum, rogersia and tricyrtus have all been reported as hosts. Bedding plants such as begonia, coleus, garden impatiens, basil, geranium, African violet and salvia can also become infected. Woody plants such as privet and azalea also can serve as sources of infection for herbaceous plants. The chrysanthemum foliar nematode (*A. ritzemabosi*) attacks chrysanthemums and related composites such as aster.

The stem and bulb nematode (*Ditylenchus dipsaci*) is especially common on *Phlox subulata*. Growth is distorted, leaves yellow and turn brown. Plants are stunted and may die. Tulip, narcissus and hyacinth can also become infected. Bulb scales turn brown, and infected bulbs may then rot. Leaves are twisted and stunted.

Favorable Conditions

Foliar nematodes need a film of water to move across plant surfaces. When plants are watered overhead, nematodes are spread in the splashing water. Symptom-less infected plants can also serve as a source of infection. Sometimes nematodes infect flowers and later seeds.

Symptoms

As they feed on the outside of the leaf, new growth may curl and become stunted and twisted. These microscopic roundworms then enter plant leaves through the stomata, feeding within the leaves on the spongy mesophyll cells.

As the nematodes feed within the leaves, the affected leaf tissue turns pale green, then yellow and, later, brown. Sometimes, the brown tissue drops out of the leaf, resulting in a shot hole appearance that can be easily confused with a fungal disease. Nematodes cannot easily move across the veins, so leaf lesions are often bounded by the larger veins. Leaf blighting may be most prevalent in mid
to late summer. On dicots, with their network of veins, affected leaves will have a patch-like appearance. This patch-like appearance can often be confused with bacterial leaf spots or downy mildews.

Figure 1: Early Symptoms of foliar nematode injury on Japanese Anemone.

Figure 2: Patch-like leaf spots caused by foliar nematodes on Japanese Anemone.
Figure 3: Vein-limited leaf spots caused by foliar nematodes on Heuchera.

On monocots such as hosta, iris and lily, you will see a stripe-like pattern, as the nematodes cannot cross the parallel veins.

Figure 4: Stripe-like pattern caused by foliar nematodes on Kaffir lily.

Severely infected plants can also become infected with Botrytis blight, masking the symptoms of foliar nematode infestation and killing the plants.

**Disease Cycle**

Once inside the leaf, nematodes can complete their life cycle, from egg to juvenile to adult, in as little as two weeks. They can over-winter in buds or desiccated leaves. Populations can become quite high before symptoms are seen. Foliar nematodes have a life cycle typical of other plant parasitic nematodes that
includes the egg, four juvenile stages, and adults. Adults (Figure 3) and juveniles overwinter below ground in the soil, plant debris and living plant tissue such as below-ground buds. Overwintering populations are generally low and numbers increase during the growing season. As new growth begins in the spring, nematodes migrate up onto plant surfaces when a film of water is present and begin feeding. Early feeding sites include stems, buds and young leaves. As the plant matures, the nematodes enter the leaves and feed there for the remainder of the season.

Reproduction occurs within the leaves and a complete life cycle can be completed within 2-4 weeks depending on temperature. When the leaf surfaces are wet, nematodes can move from one feeding location to another by exiting through a stomate and re-entering the leaf through another. Some studies indicate that they are able to enter the leaf directly in addition to through stomates. They spread from leaf to leaf or plant to plant when they are in contact or via splashing water. Spread can occur during vegetative propagation or when infested plant material is introduced into greenhouses. Foliar nematodes can survive in a dormant state for several years in dried plant material.

Management

- The first and most important step is to destroy infected plants.
- Do not place infected plants in a compost pile. The foliar nematodes can survive desiccation, and could later be reintroduced into your production area.
- Use only pest-free planting material and exclude nematodes from propagation areas.
- Reduce overhead watering and the duration of leaf wetness by thoughtful plant placement and spacing.
- Become familiar with the characteristic symptoms. To confirm the presence of foliar nematodes, submit samples to a diagnostic laboratory.
- Chlorfenapyr (Pylon) when combined with cultural practices may help suppress low numbers of nematodes. It is labeled for use on ornamental plants grown in commercial greenhouses. See label for information on plant safety.

An integrated approach of scouting, sanitation, environmental modification and nematode suppression are all necessary to manage these nematodes.

References:


**By:** Joan Allen, Assistant Extension Educator, and Leanne Pundt, Extension Educator, University of Connecticut, 2013

Photos by James LaMondia, CT Agricultural Experiment Station and Leanne Pundt used with permission.

The information in this document is for educational purposes only. The recommendations contained are based on the best available knowledge at the time of publication. Any reference to commercial products, trade or brand names is for information only, and no endorsement or approval is intended. The Cooperative Extension System does not guarantee or warrant the standard of any product referenced or imply approval of the product to the exclusion of others which also may be available. The University of Connecticut, Cooperative Extension System, College of Agriculture and Natural Resources is an equal opportunity program provider and employer.